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1 — exp[~— veln2j>l 
/ o = 4 - , (A7) 

eln2*> 

70—4ẑ  exp[— ẑe ln2*>1 
/ 1 = _ 4 ? ( A 8 ) 

e ln2j> 

7i+8^2 exp[—*>e ln2^1 
I2=-S . (A9) 

e ln2v 

If we note that, for s>tD, [*>/(*>+1)]1/2~1, we ob­
tain from Eq. (2), 

4TT2 ai 

Rx1M = , (A10) 

where we have used the relation 0-^=4^(0), which 
can be obtained by combining Eq. (14) with the 
optical theorem. To simplify our result further we 

1. INTRODUCTION 

IT has been shown by several authors1"4 that the 
so called one-meson-exchange model, taking into 

account independent exchanges of one pion, one r\y 

one p, and one co only, gives an excellent approximation 
to the experimentally observed nucleon-nucleon scat-
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could drop all the exponential terms in Eqs. (A7), 
(A8), and (A9). This does not affect the final result 
very much and corresponds to setting the lower limit 
—4i> equal to — <*> in Eq. (21). Such a procedure is 
not unreasonable, since 4*>>80 with s>tD, and AT(t,s) 
is important only in the region | / |<20, as we have 
seen. A further simplification results from the a 
posteriori observation that a#2<3Car2. If we make all 
these approximations, we finally obtain 

7T2 v(e\ji2py 
Rx\v)~ . (All ) 

at ve \x\2v—2 

With <r*=75 mb this gives #i1(W4) = 5.31. If we did 
not drop ai we would get ^ I 1 ( / D / 4 ) = 5.28. These two 
are practically indistinguishable. The latter value was 
the one actually used in the calculations of Sees. V 
and VI. 

tering. In Refs. 2, 3, and 4 it has been necessary to 
postulate the existence of an 1=0 scalar meson or 
resonance of mass 3 to 4 m* with a rather large coupling 
constant with nucleon. So far, there appears to be 
contradictory evidence on the existence of such a 
meson or resonance. 

The energy involved in the above demonstration of 
the goodness of the one-meson-exchange model is up 
to 350 MeV. On the other hand, it has also been shown 
that high-energy behavior5 of the nucleon-nucleon 
scattering amplitude or cross section can be explained 
in terms of the Pomeranchuk pole, Pf trajectory, and 

5 S. D. Drell, in Proceedings of the 1962 International Conference 
on High Energy Physics at CERN, 1962 (CERN, Geneva, 1962). 
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By considering a dispersion relation for that amplitude of p-p scattering, whose imaginary part in the 
forward direction is related to the total cross section, it is shown that the one-meson-exchange model (taking 
into account independent exchanges of the pion, the p-co vector pair, and an / = 0, scalar 2TT resonance or 
meson with a mass somewhat#greater than two pion masses) and high-energy behavior of the p-p and p-p 
scattering cross sections as given by the Regge pole hypothesis, are consistent with the existing p-p scattering 
data. In our demonstration the energy range involved is larger than previously used in the demonstration 
of either of the above two aspects of p-p scattering. Further by considering a dispersion relation and high-
energy behavior of another amplitude of p-p scattering, it is shown that the second type of coupling of the 
Pomeranchuk pole is zero. This reduces the number of unknown parameters in the expression for polarization 
at high energy. 
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TABLE I. Residues of the pole-term contributions to H\ from the various mesons acting as intermediate particles in proton-
proton scattering. Superscripts 1, 2, 3, 4, and 5 refer to ir, rj, p, co, and S particles, respectively. The notation is explained in the text. 
^+=gi2m-\-gig2mp

2/2m. ^+=iGi2m-\-GiG2fnu
2/4m. 

£ i . B* B* B* 

\Pm 
m[ 2ms

2\ 

.M -2+ ) 
4 \ Am2 J 

the co and p mesons, provided that these mesons are 
treated as Regge poles. 

In Sec. 2 of this article we also demonstrate the 
goodness of the one-meson-exchange model in such a 
way that both the above aspects are combined in one 
relation. In our demonstration we use a one-dimensional 
dispersion relation of the type given by Goldberger, 
Nambu, and Oehme,6 which we write in the forward 
direction for that amplitude of nucleon-nucleon scat­
tering the impaginary part of which is related to the 
total cross section by the optical theorem. In the u 
channel we treat w, 77, p, and co as elementary-particle 
poles. We use our dispersion relation in unsubtracted 
form and we put in the explicit asymptotic behavior of 
the amplitude as given by Regge poles in the / 
channel.5,7 The dispersion relation is used at zero 
kinetic energy, giving us a sum rule, which we show is 
satisfied by putting in known parameters. For this 
purpose, we also have to take into consideration the 
contribution of an Z=0 scalar meson or J = 0+ resonance 
of mass 320 MeV or 2.3 mv in contrast to 3 to 4 mT as 
taken by the authors of Refs. 2, 3, and 4. The ABC 
phenomenon8 is also at 320 MeV. Moreover, the 
coupling constant of this scalar meson with a nucleon 
is much smaller than that taken in Refs. 2, 3, and 4. 

In Sec. 3, by considering a dispersion relation for a 
particular amplitude, namely, H^—H5 (see below and 
Ref. 1), and its asymptotic behavior in terms of Regge 
poles, we conclude that the second type of coupling of 
the Pomeranchuk pole, namely, A2,p(0), is zero. This 
reduces the numer of unknown parameters in the 
expression for polarization at high energy for p-p 
scattering. 

2. SUM RULE FOR THE S-WAVE 
SCATTERING LENGTH 

The scattering matrix for nucleon-nucleon scattering 
is written as 

m 
T=—[ffi+JJacri- l ira-1+^8(^1+a2)- l 

E 
+# 4 <rrma2*m+H 5 or i -novn] , 

kXk ' , k—k', and k + k ' , respectively; k and k' are 
cm. momenta in initial and final states. 

We consider the p-p scattering amplitude Hi for 
which 1=1. The GNO-type dispersion relation for Hi 
in the forward direction is 

B* 
R e H i « = E 

2 2m(v—m-\-mj2/2m) 

1 r»lmHi(v') 1 rlmHi(vf) 
- / dv'+- / dv' 
TrJm v'—v wJm v'-\rv 

7T J v(. 
(1) 

v{2mv) 

where j=w, y, p, co, 6* (7=0, J0+ meson), v= (2k2+m2)/ 
m2 is the energy of the incident_particle in the lab frame, 
v(2mT) = 2(mir

2/m)—m) and Hi is the corresponding 
amplitude for p-p scattering. The B's are given1 in 
Table I. There, / is the renormalized coupling constant 
between a pseudoscalar meson and nucleon (/2=0.08 
for the pion), gi and g2 are the charge and magnetic-
moment-coupling constants of the p meson, Gi and G2 

are the same for the co meson, g8 is the coupling constant 
of the scalar meson S with the nucleon, m is the nucleon 
mass, and ntj is the mass of the meson. 

Following Igi,8 we write 

Hi(v) = Hif{v)+F(v), (2) 

where F(y) gives a divergent behavior as v —» 00 and 
Hi(v) vanishes at *>. F(v) is determined by P , P r , and 
co Regge trajectories and is given by 

1 ^u-2(0) 
F(v) = —— E - 7 — L P a i i - p/m)+Pai(p/m)2, (3) 

4m smTcti 

where the summation is over i = P,P', and co and Aij(0) 
are the residues of the respective Regge poles. Now for 
forward scattering « P ( 0 ) = 1 and, hence, from (2) and 
(3), 

where 1, m, n are unit vectors in the directions of Imfl'i(^) — ImHi (v)-\-Ai,p2{fyv-

6 M . L. Goldberger, Y. Nambu, and R. Oehme, Ann. Phys. 
(N.Y.) 2, 226 (1957); hereafter this will be referred to as GNO. 

7 Y. Hara, Progr. Theoret. Phys. (Kyoto) 28, 1048 (1962). 
8 K. Igi, Phys. Rev. Letters 9, 76 (1962). 

4i.P'a(0) 

4m 

— 1 
4 w j j 

iVI -(~) 
\m/ 

J-)- (4) 
\mJ 
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Since5 A1J(0)=-A1,P.2(0) and 
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1 

8x 

it follows from (4) that 

^ 1 .p 2(0)=(m 2 /2x)<r t o t(«) . 

(5) 

(6) 

Now5 ap ' (0)=aw (0) = 0.5 as given by the high-energy 
behavior of the scattering cross section for p-p and p-p 
scattering. Therefore, using one subtracted dispersion 
relation for PaF' and P«w, we get from (1), (4), (5), 
and (6): 

ReffiW = £ -
i 2m(v—m+m3

2/2m) 

+-
1 

(v'2-m2)1/2 dv'\ H 
I v'-v v'+v 

v'dv' AhP>2(0)Pap,(0) 0-tot(°°) 

4TT2 Jm (v'2~m2)l/2 

AltP>*(0) 1 

smwap' 

r00 / v \ dv' 
\ FaA-A — 

•Jm \mJ v' 

+-
ImH^v') 

•dv'. (7) 

We employ relation (7) at zero kinetic energy, i.e., 
at v~m. The left-hand side then gives Ja, where a is 
the S-wave scattering length. I t is well known that the 
S-wave scattering length is sensitive to the inner part 
of the nucleon-nucleon potential or, in dispersion theory 
language, to multiparticle exchange which is partly 
taken into account by the poly-pion resonances, which 
we treated separately as pole terms, while the rest of 
contribution from the multiparticle exchange appears 
in the last integral of Eq. (7). However, the S-wave 
scattering length itself satisfies a sort of dispersion 
relation. In fact, in the zero-range approximation 
[otot=2ira2/{a2k2-\-l)^ the integral 

1 r o-totO') 
— / {v,2-m2)ll2dvr 

Sw2Jm v —m 

gives exactly \a. If we put from 0 to 40 MeV, i.e., for 
0 ^ v ̂  7mT 

< r t o t = 2 x / [ F + ( l / a + ^ 2 ) 2 ] 

(r being the effective range and =1.94 mv~
l) as given 

by effective-range theory, we get 

1 

8TT2 

^ <7totOO 
(V2-m2)1 / 2 dv' « ( i a - i m , - 1 ) . 

v'—m 

The ,5-wave scattering length is thus cancelled out on 
both sides of Eq. (7). The residual part of Eq. (7) 

should not, therefore, be very sensitive to the innermost 
part of the potential or to the continuum contribution 
apart from the poly-pion resonances, which we have 
treated separately as pole terms. For this reason we 
neglect the last integral in Eq. (7) and get, after 
cancelling out the 5-wave scattering length on both 
sides, 

o=£ 
B* 

1 r°° 

87T2im 

O-totC00) 

4TT2 

~:+ 

(/*-

f 

8TT2. 

-m2 

i 

0'2 

A! 

0"tot(V) 

v,Jrm 

/dv' 

-m2)112 

,P'2(0) 1 

-m2) 

-dv' 

0'tot(^ /; 
jl/2 

v' — m 

AhP>2(0)PaP 

sinn-cep' 

/.OO 

/ 1 . it\ 

I 
-dv' 

m 

dv' 

Now for kinetic energies greater than 10 GeV or for 
y^ 71.4 wT we use the formula given by the Regge pole 
hypothesis5 and obtain from (8), 

o^L 
B* 

'+-3 mf 

8TT2 

1 

8TT2 

71 Am* 

W< 
<Ttot{v') 

-m2)112— dv' 
-m 

CtotfV) 
{v'2-m2)112 dv' 

C t o t O ) 

4TT2 

71.4mT 

v'-\-m 

v'dv' A1>P,2(0) PaP,(0) 

{v'2~m2)112 2m 

AhP'2(0) 1 r^Amr 

sm7rap' 

2m 
PaA -

fv'\dv' 

\m/ v' 
(9) 

The various terms in (9) are evaluated as follows: 
To evaluate the integral containing o-totM, we note 
that the total cross section for p-p scattering does not 
show much structure9,10 in the whole range (7mT^vf 

^71.4wff) and is nearly constant (about 40 mb). Using 
this fact, the integral is easily evaluated and gives 
2mv~

l. For m^ v'^ 7.6m^., the integral involving atot(v') 
is negligible because of the large denominator v-\-m. 
For 7.6 m7r^v/^29mir, the function cftot ( / ) [ ( / — m ) / 
(v'+m)']1'2 is nearly constant (about 2.36 mT~2) and 
hence the integral in this range is easily evaluated. For 
29mv^v' ^71 Amv, the integral is evaluated by using 
the experimental data11 for atot(vf) in this range. The 
total contribution of the integral involving tftot^O is 

9 M. J. Moravcsik, Ann. Rev. of Nucl. Sci. 10, 234, (1960). 
10 W. A. Wenzel, in Proceedings of the 1960 International Con­

ference on High-Energy Physics at Rochester (Interscience Pub­
lishers, Inc., New York, 1960). 

11 A. M. Wetherell, Proc. Phys. Soc. (London) 80, 63 (1962). 
C. Cocconi, in Proceedings of the 1962 International Conference on 
High Energy Physics at CERN, 1962 (CERN, Geneva, 1962). 
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TABLE II . Contributions to the dispersion relation (9). For the choice of the coupling constants, see text. Units: w/"1. 

1st choice 
Gi2=15 
gs

2 = 2.4 
2nd choice 
Gi2=10 
£S

2= 1.3 

Lhs 

0 

0 

. A : , , , , — — 

Rhs 
7T 

0.27 

0.27 

Rhs 
V 

0.04 

0.04 

Rhs 
p 

0.62 

0.62 

Rhs 
CO 

2.13 

1.4 

Rhs 
S 

-1 .51 

-0.82 

Rhs 
integral over 

the cross 
sections 

0.46 

0.46 

P' 
Rhs 

trajectory 

-1 .97 

-1 .97 

Rhs 
total 

0 

0 

about 2,31 mv~
l. The integral containing c^otC00) gives 

3.6 MTT1 when crtotC00) is taken to be 40 mb. Using5'7 

^4i,p'2(0)~15, and a? /«0 .5 , we have 

^ i ,p ' 2 (0)P a P , (0) 

and 
2m sin7rap 

^4i,p'2(0) 1 /-71-4"* 

2m T 
ap' 

*QA7mv 

m 
'<\.5mv 

Collecting the various values, we get from (9) 

0 = L | -0 .46w 7 r "
1 -1 .97^- 1 , (10) 

3 Mj2 

where 0.46 m^1 is the contribution from the integrals 
over the cross sections and —1.97 m^1 is the contri­
bution from the P' trajectory. 

On the right-hand side, the pole terms can be evalu­
ated using Table I and the magnitudes of the coupling 
constants as indicated by experiments. In particular, 
gi was taken from Sakurai12 to be gi2=0.6. From this, 
following Matthews,13 we choose g2= (jip—ixN)wrlgi, 
from which g2

2=8.1. To satisfy relation (10), if we use 
Gi2=15, we have to take g s

2=2.4; and if we take 
G2= 10, we have to use gs

2= 1.3. We use G2
2=0, which 

is consistent with the apparent absence of the co inter­
mediate state in photoproduction,14 and with the 
nucleon form factor calculations.13,15 For y\ we use 
f2(2m/mv)

2=2J which is consistent with other inter­
actions of this particle.16 The contributions of the pole 
terms, using the above values of coupling constants, are 
given in Table II , where we also write separately the 
contributions from integrals over the cross sections and 
from the P' trajectory. 

One can see from Table I I that for the choice Gx2= 15, 
gg

2=2.4, the contribution from the co pole is the largest 
and positive, that from the P' trajectory is almost equal 

12 J. J. Sakurai, in Proceedings of the 1962 International Con­
ference on High-Energy Physics at CERN, 1962 (CERN, Geneva, 
1962). 

13 P. T. Matthews, in Proceedings of the Aix-en-Provence Inter­
national Conference on Elementary Particles, 1961 (Centre d'Etudes 
Nucleaires de Saclay, Seine et Oise, 1961), Vol. 11, p. 87. 

14 M. J. Moravcsik, Phys. Rev. 125, 734 (1962). 
15 G. R. Bishop, in Proceedings of the 1962 International Con­

ference on High Energy Physics at CERN, 1962 (CERN, Geneva, 
1962). 

16Riazuddin and Fayyazuddin, Phys. Rev. 129, 2337 (1963). 

to the co contribution but is negative, and that from the 
5-particle pole is smaller but comparable and is nega­
tive in sign. For the choice Gi2=10, g s

2=1.3, the con­
tribution from the P' trajectory is the largest, that 
from the co pole is smaller but comparable and opposite 
in sign, and that from the S-particle pole is still smaller 
but significant and of the same sign as the Pf con­
tribution. The contributions from 'p and -w poles are 
small and that from the t\ pole is negligible. These 
latter contributions are all positive. 

To summarize, we conclude that, for the existing 
data on p-p and p-p scattering, the following aspects 
are mutually consistent: (1) the high-energy behavior 
of p-p and p-p scattering cross sections as given by the 
Regge pole hypothesis; (2) the 3-meson model of 
nucleon-nucleon scattering, consisting of the pion, the 
p-co vector pair, and an 1=0 scalar 2x resonance or 
meson with mass somewhat greater than two pion 
masses. We thus confirm the conclusions drawn by the 
other authors.1-4,17 However, the 1=0 scalar meson 
which we have used is at 320 MeV where the ABC 
phenomenon exists and has a smaller coupling constant 
than that used in Refs. 2, 3, and 4. Also, the energy 
range involved in our demonstrations is larger than 
that used in Refs. 1, 2, 3, and 4 and Refs. 5 and 7, 
where the energy used is below 350 MeV and above 10 
GeV, respectively. 

3. DISPERSION RELATION FOR THE 
AMPLITUDE L = H4-H5 

We now consider the amplitude L=HA—H5 and 
write it as 

L{v) = L'(v)+G{v), 

where Lf(y) vanishes at oo and G(y) may diverge as 
v -—> GO and its imaginary part for the forward direction 
is given by 

v-mSAltP(0)A2,p(0) 
lmG(v) = 

2m2 2 
v—mr /v\ 

3^i ,p , (0M2 t P ' (0 )P«p/ (~) 
4w2 L \ml 

+3Ah„(0)A2tO)(0)Pc 
\m/. 

(ID 

" H. P. Noyes, Phys. Rev. 130, 2025 (1963). 
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Hence the asymptotic behavior of ImL is given by 
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1 3AltPA2A0) 
- I m L — > — 

ReL(u) LB
i 

= _£ . 
v—m i nij2(v—m-{-mj2/2m) 

where 

4w2 

3Altp,(0)A2,P,(0)/pyr'-1 • 

4w2 \m/ 

3AiA0)AitU(0)/vyr-1 

\m2 \ ml 

+-
ImL(v') 

(v/—v)(v/ — m) 

lml{v') 

•dv' 

-dv' 

(12) 

7T J m (v' + v)(v' + m) 

3A1)P(0)A2,P(0)P 

+- 4:irm(v2—m2) 
(14) 

Ai,p ' (0)I2 .p ' (0) = ^ i ,^(0M2, i"(0)-
r ( i + a P 0 2«i" 

T(ap') A/71" 

I t was shown in Ref. 1 that if we calculate the pole 
terms by using the coupling constants given in Sec. 2, 
then the existing p-p scattering experimental data 

0 . _ __, . . , r / 4 «\ i -r r / \ satisfy relation (14) without the last term. Moreover, 
Smce aP. ~« w ~0 .05 , l t is clear from (12) tha t I m L « t h e ^ t e n n i v e g a k a(. v = w_ F o r t h e s e r e a s Q n s w e 

can go at the most as v when „ - » oe. We, therefore, c o n c l u d e t h a t ^ p ( 0 ) = 0_ 
write a GNO-type dispersion relation for L{v) in the T h e v a n i s h i ' o f M ( 0 ) reduces the number of 

" ^ „i_1!e"!!?!1:Z1- ° n e s u b t r a c t l o n a t " = «• S u c h undetermined parameters in the expression for the 
polarization7,18 in p-p scattering at high energy. This 
expression is given by7 

a dispersion relation is 

ReL(v) LB
j 

v—m i mj2(v—m+mj2/2m) P(t) = - — X 

+-
lmL(v') 

a(pp) 

4 At,p(P) 

•dv' 

+-

(v'—v)(v'—m) 

ImL(u') 
dv' 

(v'-\-v)(v'+m) 

i»m„) imJL(V) 

- v 3 -
A,,P.(0) 1 A,.a(0y 

i4i,P.(0) ^ 4 x , . ( 0 ) J 

If ^2,p(0) = 0 as we have concluded, then 

(-tyi**(pp)-<r(pp) 
p{ty-

(v'—v)(v'—m) 
(13) 

<r(^>) 

X Vj-
^2 ,p '(0) 1 -4Sl.(0)-

; + 
A^O) y/SA^iO)-

where j=ir, rj, p, u (S particle does not contribute in 
this case) and LB^B^-B^ where BMt and B»i are Q n e h a g g o m e i n f o r m a t i o n a b o u t A^{0)/Ai,M; it7 

given in Table I of Ref. 1 We shall neglect the con- i g ^ _ $Q t h e p o l a r i z a t i o n a t h i g h e n e r g y i s dependent 
tinuum contribution given by the last integral in (13) Q n ^ s i n g l e p a r a m e t e r ; At<p,(0)/Al,P,(0). 
for reasons given m Ref. 1. . We are indebted to Professor M. J. Moravcsik for 

Now if we use expression (12) for the asymptotic h e l p f u l c o m m e n t s . 
behavior of ImL (v) and assume that it is dominated by 
a Pomeranchuk pole, then we get from (13) 18I. J. Muzinich, Phys. Rev. Letters 9, 475 (1963). 


